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Abstract

The future of travel will be characterized by changes in weather patterns and
changes in transportation technology. How will these forces interact? We ex-
plore this question by utilizing a unique randomized experiment with Uber riders
in Cairo, Egypt. We consider how very hot days (>35◦C/95◦F) affect transporta-
tion choices, how a sizeable price decrease (simulating a future with autonomous
vehicles and access to cheaper transportation) changes travel, and how extreme
weather interacts with these choices. We find that while travel will increase sig-
nificantly in response to the price decrease, extreme weather dampens this effect
by 26%. Individuals receiving subsidies also shift away from public transportation
modes and towards private transportation modes, except when the public transit
option is air-conditioned. These results provide important insights for policymakers
when considering optimal travel policy for the future.
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1 Introduction

Understanding how people respond to extreme weather is important for policymakers,

academics, and businesses. In transportation markets, responses to weather shocks will

depend on the cost, comfort, and other characteristics of travel options available to con-

sumers for a given trip. The literature has shown that extreme weather events will

become more common in the future (Alimonti et al., 2022, Box, 2022, Swenson, 2023)

and that private transport could become substantially less costly as technologies such

as autonomous vehicles mature (Bagloee et al., 2016, Bösch et al., 2018, Reid, 2021).

How might these two forces interact? What will the effects on overall travel and on

substitution across transport modes be?

We combine data from a unique randomized experiment (Christensen and Osman,

2021) with detailed data on extreme weather events (days where the high temperature

is greater than 95◦F/35◦C) to examine how transport decisions respond to exogenous

variation in weather in the context of reductions in the cost of personalized transport.

Using 1,373 Uber riders in Egypt, we randomize individuals into two groups who are

provided a 25% or 50% discount, respectively, on their Uber rides for 3 months and a group

that serves as control and receives no discount.1 We collect data on Uber utilization and

overall mobility using Google’s Timeline feature on participant smartphones and regular

follow up surveys that provide information about the other modes of transportation taken

during travel.

First, we find that increases in mobility resulting from price reductions are dampened

by extreme heat. While new technologies that decrease the price of private transport will

increase overall travel, our findings suggest that increases in the frequency of hot days

in certain regions could greatly mitigate the effect on travel. This decrease in travel is

primarily driven by adjustments during the hottest part of the day (from 11am-6pm).

We find that travel in the control group does not decrease on hot days. This indicates

that riders forgo trips that they only considered when the price of personalized travel had

gone down. Hence, while cheaper travel leads to more trips, hotter weather will make

those trips less enticing.

Second, we find evidence of a pronounced effect on substitution away from public

transport (which does not have air conditioning in Egypt) to Uber in the context of fare

reductions. Thus, while overall trip-taking decreases, the proportion of travel taken in

private vehicles increases. In other words, the reductions in travel resulting from hotter

weather for individuals who receive a subsidy are disproportionately larger on public

transport modes than on private transport modes. This impact on mode substitution

1This experiment is first reported and analyzed in Christensen and Osman (2021). That paper builds a
research framework for estimating the price elasticity of demand for mobility (total distanced traveled)
and uses it to estimate the change to welfare and external costs (e.g. congestion and emissions) in
response to a technologically induced price change.
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increases the emissions intensity of a kilometer of travel.

We use these estimates to simulate what could happen to travel demand in several

large developing country cities with similar numbers of hot days at baseline. Using fore-

casts of the growth in the frequency of hot days from current climate models, our esti-

mates indicate that travel demand could increase more in cities such as Dehli, India, where

extreme temperature projections are more mild. The behavioral effects of technology-

induced price changes could be dampened in cities such as Bangkok, Thailand, which are

subject to higher projected growth in the fraction of days that are extremely hot.

We contribute to the literature at the intersection of transport, environmental, and ur-

ban economics. A large set of studies have shown that climate affects transport behavior,

but they rely on observational data and typically focus on a single mode of transporta-

tion (Hymel, 2009, Leard and Roth, 2015, Lin et al., 2020, Calvert and Snelder, 2016,

Singhal et al., 2014). While the economics literature has shown that extreme weather

can reduce the utilization of public transport, it is unclear how extreme weather affects

substitution toward private modes. We contribute to this literature in three ways. First,

we provide experimentally-identified estimates of the behavioral impacts of reductions in

the price of transport in the context of different temperature regimes. Second, we use

detailed trip-level data on travel and hourly temperatures to examine the how impacts

differ during the hottest parts of the day. With these data, we show that travel is not

simply shifting to cooler parts of the day, but is decreasing overall. Third, by collecting

detailed data on total mobility, we are able estimate the effects of the temperature-price

interaction to examine shifts to the overall proportion of travel taken by transport mode.

While both public and private transport use decrease on hot days, public transport use

decreases significantly more.

This study also contributes to the literature on the impacts of climate on decision

making. For example, Martinez-de Albeniz and Belkaid (2021) and Rose and Dolega

(2021) both look at the impact of weather on retail sales. Similarly, Rode et al. (2021)

investigates the impacts of climate on energy use via air conditioning decisions. While

projections indicate that the cost of urban transport and the frequency of hot days could

both shift in the latter half of the 21st century, empirical work to date has fueled a

limited discussion about the interaction between these important forces. Our results

illustrate that extreme weather will mitigate the impacts of technological advances in

transport, and that this effect will differ across space and time. This is important for

policymakers to consider as they anticipate changes in transportation technology and a

changing climate. Our results suggest that the impacts of autonomous vehicles may be

attenuated in locations that are more exposed to extreme weather and that substitution

from public to private vehicles will depend on existing infrastructure, including whether

public transport options are temperature controlled (i.e. have air conditioning). Together,

these results suggest important impacts on emissions, congestion, and revenues from
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public transit services.

2 Background

2.1 Transportation & Weather in Cairo

Cairo, the capital city of Egypt, is one of the largest cities in the world. The greater

Cairo metropolitan area contains 20 million residents (Hudec, 2023). Traffic congestion

in Cairo is high due to the large volume of traffic and relative lack of infrastructure. This

congestion greatly reduces travel speed and increases travel time, leading to an estimated

loss of approximately 4% of Egypt’s GDP (World Bank Group, 2014).

As in many major cities, public transport in Cairo is a major contributor to mobility.

Cairo has several forms of public transport, including public bus services, private shuttle

bus services, and metro lines (US News, 2023). The bus system in Cairo serves more than

350 million passengers per day and is quite affordable for riders. Cairo does not have a

public bus map, though a recent grassroots movement has attempted to create a map of

bus routes in the city (Transport for Cairo, 2022). The metro system consists of nearly

100 km of tracks across three lines with 50 stations. Daily metro ridership is around 1.5

million, and trains run every 2-5 minutes, depending on the time of day (Cairo Metro,

2023, Hudec, 2023). Notably, both the public buses and metro lack air-conditioning,

making them very hot on high-temperature days. On the other hand, private shuttle bus

services, such as Swvl, have air conditioning. This is one way that temperature could

impact individuals’ transportation decisions in Cairo.

Cairo also has options for private, single-occupancy transportation. Private cars are

plentiful and traditional taxis are seemingly ubiquitous. Uber has been present in Cairo

since 2014 and has held a large market share in ride-hailing from 2014 until the present

(Espanol, 2022).

The climate in Cairo is warm and dry year-round. Figure A1 illustrates daily max-

imum temperatures from 2019-2020, as recorded by Weather Underground (Weather

Underground, 2023). The maximum temperatures during this period reached a low of

around 60◦F during the winter months and climbed to between 95-100◦F during the sum-

mer months, with a handful of days surpassing 100◦F. The average high temperature

in Cairo across this time period was 82.7◦F. Due to the lack of variation in humidity

or precipitation in Cairo, variation in high temperatures serves as the primary climatic

determinant of comfort in travel decisions.
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3 Research Design & Data

We partnered with Uber to implement a randomized experiment that provided prolonged

price subsidies to a sample of riders. Riders were sent a text message inviting them to

join a “study on mobility behavior,” and those who opted in were asked to answer our

surveys (described below), to provide access to their activities on the Uber platform, and

to turn on their Google Maps timeline, which provided us with detailed data on total

daily travel (including, but not limited to, Uber trips).

Individuals who enrolled in the sample were randomized into three groups: (1) a group

that received a 50% subsidy for 3 months, (2) a group that received a 25% subsidy for

3 months, and (3) a control group that did not receive any price subsidies. Our dataset

combines this random variation with the exogenous variation in extreme weather2, which

we define as days where the maximum temperature reaches 35◦C/95◦F.3

Survey Data

Baseline and follow-up surveys were conducted throughout the period of study and pro-

vide information about the individual and the totality of their transport behavior, on

and off Uber. In addition to asking about the number of trips taken on each mode of

transport on the day prior to the survey, we also collect information on the total distance

traveled (as recorded in their Google Timeline) over the three days prior to the survey.

We use the date that the survey was completed to match temperature data with the

survey outcomes for each individual.

Uber Admin Data

Administrative data from Uber are available for all individuals at the trip level. These

data include time (rounded to the nearest hour), location (rounded to 4 digit latitude/

longitude), distance travelled, and fare information. We match these data with the daily

temperature data from Cairo.

Temperature Data

Temperature data come from Weather Underground, which reports data from the Cairo

International Airport Station. The data include the daily minimum and maximum tem-

perature, precipitation, and wind speed. We define a hot day as one that has a maximum

2Temperature fluctuations are generally considered to be exogenous. While there is concern over en-
dogeneity in temperature measurement in cases with large amounts of missing data (see Schultz and
Mankin (2019)). Since we are not missing temperature data for any days in our sample period, this is
not an issue for our setting.
3See Christensen and Osman (2021) for extensive details about the experiment and data collection.
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temperature of at least 95◦F (35◦C), though we also include a cutoff of 90◦F as a robust-

ness check for our results. Figure A1 shows the maximum temperatures in Cairo each

day in 2019 and 2020, covering the time period when the study took place. The red

dashed line represents 95◦F, so days with maximum temperatures at or above that line

are defined as hot days for the purposes of the analysis.

Weather data are also available at the hourly level for each day in 2019 and 2020. The

hourly-level data are used to determine which times of the day are generally the hottest

in Cairo. Average hourly temperatures by month are plotted in Figure A2, which shows

that the hottest time of day is generally between 11am and 6pm, and this appears to be

consistent throughout the year.

4 Methodology

Our empirical strategy utilizes two sources of exogenous variation. The first is the explicit

random assignment of riders into treatment and control groups. In order to increase

power, we combine individuals in the two treatment arms who received the 25% and

50% subsidies into a single treated group. Table A1 shows that randomization was

successful and the treatment and control groups are balanced on baseline characteristics.

The second source of exogenous variation comes from the daily temperature, which is

generally accepted as being plausibly exogenous (Schultz and Mankin, 2019).4

We investigate the impact of hot days and access to a subsidy on several outcomes

related to overall travel and mode substitution. Using the Uber data, we estimate the

effect on the number of trips and the distance travelled, both for the entire day and at

certain times of day.5 Using the survey data, we estimate the effect on the total number of

trips per day, trips per day by mode, total distance travelled, and number and proportion

of trips taken on public and private modes of transportation.6 Our treatment variable is

defined as an indicator for having received any subsidy towards the price of Uber travel.7

Hence, we estimate the following equation, which gives us the impact of experiencing a

hot day, of receiving any subsidy, and of the interaction between the two:

Yid = β1HotDayd + β2Subsidyi + β3HotDayd × Subsidyi + δm + δc + δf + δd (1)

4While we choose 95◦F/35◦C as the cutoff for extremely hot days, we show in Appendix Table A3 and
Appendix Table A5 that our results are robust to choosing 90◦F as the cutoff.
5For distance, we use the inverse hyperbolic sine transformation.
6Public modes of transportation are defined as the metro, buses, and SWVL. Private modes of trans-
portation are defined as personal car, Uber, taxi, and Toktok. In order to calculate the proportion of
trips taken on private modes of transportation, we drop days where individuals do not take any trips,
but the results are robust to multiple ways of handling these missing values, as seen in Table A4.
7Appendix Table A6 and Appendix Table A7 report estimates when we split the treatments. The results
are qualitatively similar but less statistically precise.
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where Yid is the outcome of interest (number of trips taken or distance travelled),

HotDayd is an indicator for whether a given day was at least 95◦F (35◦C), Subsidyi is an

indicator for whether an individual receives any subsidy (either 25% or 50% of the price

of an Uber ride), δm is a month fixed effect, δc is a cohort fixed effect, δf is a survey round

fixed effect (for the regressions using survey data only), and δd is a day-of-the-week fixed

effect. We use two-way clustering to calculate our standard errors at the individual and

day levesl (Cameron et al., 2011).

5 Results

Effects on Overall Travel

We begin by looking at the changes in overall trips taken and distance travelled on Uber.

Table 1 reports estimates of the effect of a hot day on the number of Uber trips and dis-

tance travelled on Uber. We estimate both aggregate effects and intra-day impacts, which

we generate by splitting the day into 3 time periods: early morning (3am-10am), midday

(11am-6pm) and evening (7pm-2am). Intra-day variation in temperature is substantial

in Cairo. Figure A2 shows that the temperature is usually relatively mild in Cairo until

around 11am and again after 6pm. We use the detailed time values in our data to assign

each Uber trip taken to one of these times of the day.

Table 1 reports the results, showing that travel on Uber seems to decrease during

hotter times of the day for individuals who receive the subsidy. Columns 1 and 2 show

the impacts for trips taken and distance travelled throughout the entire day. Receiving a

subsidy significantly increases the number of trips by 0.423 and also significantly increases

the distance travelled. Both interaction terms have negative but insignificant coefficients

of -0.047 and -0.068, respectively. This suggests that heat may attenuate the responses to

discounts on ride-hailing services. When we estimate the effects separately for each time

period, we find that the effect of temperature on the Uber price elasticity is driven by

reduction during the midday hours (11am-6pm), when Uber trips and distance traveled

decline by 0.041 and 0.085, respectively.

There is little evidence that temperature has any effect on travel choices on Uber

during the cooler parts of the day, as shown in columns 3-4 and columns 7-8. This setup

allows us to directly examine intertemporal substitution within the day. If participants

were choosing to reallocate their trips across the hours of a day to avoid travel during

hot times, we would expect to find a compensatory effect during the other time intervals

(3am-10am and 7pm-2am). While we cannot rule out a modest level of substitution to

the evening interval (7pm-2am), the estimates suggest that participants who face lower

Uber prices are taking fewer trips on Uber when the day is hot.

Next, we use our survey data to assess how overall travel behavior responds to extreme
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temperatures. Results reported in column 1 of Table 2 indicate that price reductions for

Uber services result in a positive but non-significant treatment effect on the total number

of trips taken in a given day, the magnitude of which aligns with the results found in

Christensen and Osman (2021). We do not find evidence of any effect of a hot day on

travel when travelers face current market prices for all modes. However, the interaction

term in column 1 indicates that hot days do have an impact on the additional travel taken

in the context of a price reduction. Individuals who receive the treatment dramatically

reduce the number of trips that they take when experiencing a day above 95◦F (the

magnitude of the reduction is 0.823).

Since not every day is a hot day, we scale the magnitudes of the effects up to the

month level in order to calculate how large the effects are over the period of a 30-day

month. These scaled-up coefficients are shown in Panel B of Table 2. Column 1 shows

that, across a month with the average number of hot days (5.47% of days in our sample),

the total number of trips increases by a total of 3.032 trips, which is smaller than the

4.110 trip increase that we would estimate if we only looked at the main effect of the

subsidy without taking temperature into account. Hence, experiencing a hot day reduces

the treatment effect of the subsidy by 26%.

In addition to looking at the number of trips, it is also possible to examine the impact

of subsidies and hot days on the total distance travelled. We estimate these impacts

in Table A2, but because total distance traveled has much higher variance than total

number of trips, we have lower statistical power to detect effects. Column 1 uses the

inverse hyperbolic sine transformation of the distance as the outcome, and column 2 uses

distance in levels as the outcome. The larger standard errors imply that we cannot rule

out large increases or decreases in overall travel, but the point estimates suggest that the

effect on distance is likely similar to the effect on total trips.

Overall, we find that for both the Uber data and the survey data, the interaction be-

tween receiving a subsidy and experiencing hotter weather results in a decrease in overall

travel. This suggests that warmer temperatures mitigate a potential future increase in

trips taken as a result of cheaper private transport.

If individuals are not reallocating the timing of their trips within the day, it seems

likely that the people who receive a subsidy just take more low-value trips on days that

are not hot. The negative coefficient on the interaction term for total trips in Table 2,

then, could be a reduction in these types of trips. Individuals who do not receive a

subsidy may not be taking as many unnecessary trips, meaning that they have fewer

non-essential trips that they can eliminate. This, then, could be why individuals in the

control group do not respond in the same way to a hot day.
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Effects on Mode Substitution

Our findings above show that individuals who are receiving a subsidy decrease their trips

taken when the weather is hotter. To understand the impacts of this decrease, it is

important to understand whether individuals are decreasing travel proportionately for all

modes or are engaging in subsitution across modes. We are able to disentangle the change

in travel by mode to assess the potential of mode substitution. In Panel A of Table 2,

column 2 reports estimates from equation (1) with the proportion of private trips (number

of private trips divided by number of trips taken) as the outcome.8 Estimates reported in

column 2 indicate that, when an individual receives a subsidy, the proportion of trips that

they take on private modes of transportation increases by 0.074. A hot day does not have

a significant effect on the proportion of private trips. However, the interaction between

receiving a subsidy and experiencing a hot day increases the proportion of private trips

taken by 0.132. This effect is equal to 22% of the control group mean.

Columns 3 and 4 of Table 2 show how the impact on the number of trips taken varies

by transport mode. The change in the proportion of trips taken on private transport is

driven by decrease of 0.633 public transit trips on a hot day for individuals receiving a

subsidy as shown in column 3, with a smaller (and statistically insignificant) decrease

in trips taken on private transport modes in column 4. Combine with our findings from

the previous section, the increase in the proportion of private trips implies that people

are changing their transportation decisions on both margins: in some cases, they are

deciding not to travel, and in some cases, they seem to be substituting towards private

transportation.

When effects are scaled up to the monthly level in Panel B, the total effect on public

transportation is a decrease of 5.1 trips (a 12% increase in the treatment effect on hot

days), and the total effect on private transportation over the month is an increase of 8.1

trips (a 6% decrease in the treatment effect on hot days).9

Our data allow us to break down the results further and consider how travel changes

for each separate transport mode. This is done in Table 3. In this table, we see that the

main decreases in travel come from decreases in metro trips in column 1 and bus trips

in column 2. Another interesting result is that the coefficients for the bus and for Swvl

have opposite signs in columns 2 and 3. This is important because a defining difference

between Swvl (a private bus service) and the other types of shared transportation is the

fact that Swvl has air conditioning, while the public buses and metro generally do not.

8Private trips include trips taken via personal car, Uber, taxi, or Toktok. Public trips include trips taken
via metro, bus, or SWVL. When no trips are taken, meaning that the denominator is equal to zero, the
value are treated as missing for these observations, though the results are robust to different ways of
treating these values.
9Note that in our sample, 5.5% of days are above 95◦F. However, over a full year in Cairo, the total
number of hot days will be closer to 30%. The difference between these two numbers is due to the period
over which the survey data was collected, since we do not have as much data during the summer, which
is the hottest time of the year.
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This suggests that one way to minimize the shift away from public transit is to ensure that

public transportation options are properly temperature-controlled to allow individuals to

feel comfortable taking trips on those modes even in the face of extreme heat.

The fact that we find evidence of mode substitution has implications for policy. If

private transportation becomes cheaper and temperatures become hotter, individuals may

shift away from public transportation, which could increase emissions and congestion.

Strategies such as implementing air conditioning on buses could potentially mitigate this

shift from public to private transport modes.

6 Robustness

We conduct several robustness checks for our main estimates. First, we check that our

results are not driven by choosing the cutoff of 95◦F (35◦C). This cutoff aligns with that

used for defining hot days in several climate projections models. However, we re-estimate

our main results for days above 90◦F . Table A3 and Table A5 show that redefining the

cutoff as temperatures above 90◦F produces results that are generally similar to our main

results for Uber trips and all trips, respectively. While the signs are the same as those in

our main results, the magnitudes are attenuated because we lose some power to detect

effects. This is unsurprising, as days above 90◦F are quite common, making up 36.6% of

overall observations. This means that these days are less likely to represent an exogenous

shock and more likely to represent a seasonal trend that individuals gradually adjust to.

While it would be nice to also investigate how higher temperature cutoffs above 95◦F

impact these outcomes, this is not feasible because of the limited number of days with

higher temperatures. As can be seen in Figure 1, many of the days with high temperatures

above 95◦F are still below 100◦F, meaning that the right tail of the maximum temperature

distribution drops off quite quickly.

Additionally, our results are robust to separating the two subsidy amounts (the 25%

and 50% subsidy). Table A6 shows the effects of hot days and the two separate treatments

on Uber trips and distance travelled for the whole day and during the different times of

day. The results are very similar to those found in our main specification, with slightly

stronger effects for individuals who receive the 50% subsidy. Table A7 shows the effects

of private and public transportation for the two separate treatment arms. Again, the

estimated coefficients are quite similar, though in this case the interaction effects are

stronger for recipients of the 25% subsidy.

7 Discussion, Policy Simulation, & Conclusion

Our results show that extreme weather will affect transportation choices in a future

with autonomous vehicles. As transportation becomes cheaper, people will increase the
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number of trips that they take; however, as temperatures increase, this effect will be

dampened.

Next, we consider the implications of these results across time and space. In order to

do this, we examine how future projected changes in temperatures will change people’s

transportation decisions as travel becomes cheaper, holding constant the treatment effect

of cheaper transportation. In addition to looking at projections for Cairo, we also show

estimates for four other cities: Delhi, India; Bangkok, Thailand; Dhaka, Bangladesh; and

Kano, Nigeria. These cities were chosen based on having city sizes and temperatures

that are loosely comparable to the setting of Cairo. Data comes from the World Bank’s

Climate Change Knowledge Portal (World Bank, 2021). Figure 1 shows the % reduction

over time that high temperatures would have on the treatment effect if a similar subsidy

was enacted in each of the cities.

In this figure, we assume that each city experiences access to cheap private trans-

portation similar to the subsidies given in Cairo in our experiment. We also assume that

the treatment effect of the subsidy, the effect of a hot day, the interaction effect between

the two, and the number of hot days are the same across cities at the baseline, essentially

ensuring that all cities start out at the same point along the y-axis.10 However, temper-

ature projections indicate that temperatures will increase over time, and the rate of this

increase is different for each city. This provides variation in the effects of temperature

over time by city. The cities that experience larger percentage increases in the number

of hot days will also experience a faster decline in additional trips taken as a result of

the subsidy (in other words, the percent reduction in the subsidy effect caused by rising

temperatures will be larger in those cities).

As a result, this figure suggests that the impact of cheaper transportation on trips

taken could be greatly influenced by climate change. This is important because it has

implications for congestion and emissions in these settings. Places like Bangkok will

experience more warming, which will substantially mute responses to cheaper private

transport and in turn will affect the use of public transport services. Places like Delhi

will react similarly to Cairo, with decreases as described above, but not as drastic as

what is predicted for Bangkok.

Understanding how people respond to extreme weather and changes in transportation

prices is important given future predictions for rising temperatures and falling prices.

Overall, as temperatures rise and the price of private transportation falls, we find that

individuals change their transportation decisions. People travel more when transportation

is cheaper, but the increase in travel is smaller on hot days. Utilizing the setting of a

randomized experiment and the exogenous nature of hot temperatures, we are able to

capture of the effect of each of these forces and the interaction between them.

10If we were to relax these assumptions, the difference is that each of the lines would be able to start at
different points along the y-axis.
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These results are important to consider when evaluating the impact of cheaper au-

tonomous travel in conjunction with the potential of a warming planet. Additional invest-

ments in public transit infrastructure (e.g. air conditioning) could prove a useful strategy

to keep travelers using modes like buses and the metro in the face of rising temperatures.

This could help mitigate the potential substitution from public transit towards private

cars.

Further research is needed to show how these two forces — falling prices and ris-

ing temperatures — will impact transportation decisions in other contexts. This paper

provides a motivation and framework for understanding this interaction more fully in a

broad range of settings.
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Rose, N. and L. Dolega (2021): “Itâs The weather: Quantifying the impact of

weather on retail sales,” Applied Spatial Analysis and Policy, 15, 189â214.
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Table 1. Effect of a Hot Day on Number of Daily Uber Trips

Trips Distance (IHS) Trips Distance (IHS) Trips Distance (IHS)
(1) (2) (3) (4) (5) (6) (7) (8)

Treatment 0.423*** 0.679*** 0.088*** 0.229*** 0.196*** 0.406*** 0.137*** 0.296***
(0.025) (0.038) (0.008) (0.020) (0.013) (0.025) (0.010) (0.019)

Treatment*Hot Day -0.047 -0.068 -0.013 -0.027 -0.041** -0.085** 0.010 0.020
(0.039) (0.056) (0.010) (0.027) (0.019) (0.037) (0.016) (0.031)

Hot Day 0.017 0.009 0.007 0.004 0.019 0.030 -0.008 -0.020
(0.031) (0.046) (0.009) (0.023) (0.016) (0.031) (0.012) (0.024)

Mean for control group 0.209 0.402 0.046 0.112 0.103 0.222 0.061 0.133

Mean outcome on hot 
days for control group

0.188 0.362 0.038 0.090 0.085 0.189 0.066 0.144

N 112,115 112,115 112,115 112,115 112,115 112,115 112,115 112,115

7pm-2am

Notes: The treatment variable is an indicator equal to one if the individual has received any subsidy. A hot day is defined as one that is at least 95 degrees. Month, 
cohort, and day-of-week fixed effects are included in the regressions, and two-way clustering at the person level and the day level is used to calculate the standard 
errors. The Uber admin data is used to produce the results in this table.

 3am-10amAll Day

Trips Distance (IHS)

 11am-6pm

Table 2. Effect of a Hot Day on Number of Trips by Transit Type

PANEL A: Estimates of the day-level regressions

(1) (2) (3) (4)
Treatment 0.137 0.074*** -0.151* 0.288***

(0.095) (0.024) (0.086) (0.090)
Treatment * Hot day -0.823*** 0.132*** -0.633*** -0.191

(0.303) (0.042) (0.222) (0.295)
Hot Day 0.166 -0.023 0.301 -0.135

(0.345) (0.065) (0.343) (0.317)
Mean for control group 2.859 0.597 1.225 1.633
Mean outcome on hot 
days for control group

3.327 0.561 1.538 1.788

N 2,877 2,651 2,877 2,877
PANEL B: Effects aggregated to the month level

(1) (2) (3) (4)
Treatment 4.110 - -4.530 8.640
Treatment * Hot Day -1.351 - -1.039 -0.313
Hot Day 0.272 - 0.494 -0.222
Total 3.032 -5.075 8.105

All Trips
Public 

(Metro+Bus+SWVL)

Private 
(Personal+Uber+

Taxi+Toktok)

Proportion 
Private

(Private/All Trips)

Notes: The treatment variable is an indicator equal to one if an individual received any subsidy. A hot day is defined as 
one that is at least 95 degrees. Month, cohort, day-of-week, and followup fixed effects are included in the regressions, 
and two-way clustering at the person level and the day level is used to calculate the standard errors. Observations are 
dropped if the survey begin and end dates are not the same.In our sample, 0.0547 of the days are above 95 degrees. The 
results in Panel B are obtained by multiplying all effects by the number of days in a month (30) and multiplying the hot 
day and interaction coefficients by the probability of a hot day (0.0547).

All Trips

Proportion 
Private

(Private/All Trips)
Public 

(Metro+Bus+SWVL)

Private 
(Personal+Uber+

Taxi+Toktok)
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Table 3. Effect of a Hot Day on Different Types of Transit

Metro Bus Only SWVL Only Uber Taxi Personal Toktok
(1) (2) (3) (4) (5) (6) (7)

Treatment 0.008 -0.162** 0.002 0.322*** -0.026 -0.007 -0.001
(0.031) (0.073) (0.015) (0.053) (0.019) (0.083) (0.022)

Treatment * Hot day -0.252** -0.428** 0.047* 0.155 -0.075 -0.281 0.010
(0.111) (0.176) (0.026) (0.151) (0.055) (0.290) (0.034)

Hot Day -0.043 0.340 0.004 0.319** -0.014 -0.411 -0.029
(0.120) (0.272) (0.018) (0.143) (0.103) (0.302) (0.044)

Mean for control group 0.187 0.989 0.050 0.551 0.095 0.895 0.092
Mean outcome on hot 
days for control group

0.327 1.212 0.000 0.808 0.115 0.846 0.019

N 2,877 2,877 2,877 2,877 2,877 2,877 2,877

Notes: The treatment variable is an indicator equal to one if an individual receives any subsidy. A hot day is defined as 
one that is at least 95 degrees. Month, cohort, day-of-week, and followup fixed effects are included in the regressions, 
and two-way clustering at the person level and the day level is used to calculate the standard errors. Observations are 
dropped if the survey begin and end dates are not the same.

Public Modes Private Modes
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Appendix

Figure A1. Daily Maximum Temperatures in Cairo, 2019-2020
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Figure A2. Hourly Temperatures By Month in Cairo

Table A1. Baseline Balance for Survey and Uber Admin Sample

Control Treatment Difference
(1) (2) (3)

Female 0.442 0.444 -0.002
(0.029)

Married 0.508 0.477 0.031
(0.029)

Age 31.532 30.899 0.632
(0.660)

Tertiary Education 0.884 0.876 0.008
(0.019)

Total Mobility (km/week) 88.569 81.971 6.599
(10.849)

Total Mobility (min/week) 637.821 593.469 44.351
(139.118)

Own a car 0.265 0.246 0.018
(0.025)

% Days >=90 0.429 0.436 -0.007
(0.027)

% Days >=95 0.107 0.107 -0.000
(0.012)

N 455 918
P-value for joint F-Test 0.949

Notes: Data comes from baseline observations except for the percentage of days 
above 90 and 95 degrees, which come from the study period. Standard errors are 
clustered at the person level.
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Table A2. Effect of a Hot Day on Overall Distance Travelled

IHS Levels
(1) (2)

Treatment 0.130 1.725
(0.089) (2.588)

Treatment * Hot day -0.005 0.691
(0.123) (4.950)

Hot Day 0.138 4.316
(0.136) (4.597)

Mean for control group 2.749 31.13
Mean outcome on hot 
days for control group 3.174 41.17

N 8,706 8,706

Notes: Treatment is an indicator equal to one if receiving any subsidy. 
Hot day is an indicator for a day being at least 95 degrees. Month, 
cohort, day-of-week, and followup fixed effects are included in the 
regression. Two-way clustering at the person level and the day level is 
used to calculate the standard errors. Observations are dropped if the 
survey begin and end dates are not the same. 

Table A3. Effect of a Hot Day (≥ 90 ◦F) on Number of Daily Uber Trips

Trips Distance (IHS) Trips Distance (IHS) Trips Distance (IHS)
(1) (2) (3) (4) (5) (6) (7) (8)

Treatment 0.416*** 0.673*** 0.089*** 0.234*** 0.197*** 0.410*** 0.130*** 0.287***
(0.029) (0.045) (0.009) (0.023) (0.016) (0.031) (0.011) (0.022)

Treatment*Hot Day 0.000 -0.009 -0.008 -0.021 -0.016 -0.036 0.021 0.029
(0.042) (0.061) (0.012) (0.031) (0.021) (0.040) (0.017) (0.032)

Hot Day 0.015 0.030 0.015 0.043* 0.006 0.022 -0.010 -0.014
(0.029) (0.045) (0.009) (0.023) (0.015) (0.031) (0.012) (0.023)

Mean for control group 0.209 0.402 0.0460 0.112 0.103 0.222 0.0606 0.133

Mean outcome on hot 
days for control group

0.197 0.382 0.0472 0.117 0.0886 0.198 0.0609 0.136

N 112,115 112,115 112,115 112,115 112,115 112,115 112,115 112,115

Notes: The treatment variable is an indicator equal to one if the individual has received any subsidy. A hot day is defined as one that is at least 90 degrees. Month, 
cohort, and day-of-week fixed effects are included in the regressions, and two-way clustering at the person level and the day level is used to calculate the standard 
errors. The Uber admin data is used to produce the results in this table.

All Day  3am-10am  11am-6pm 7pm-2am

Trips Distance (IHS)
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Table A4. Alternative Definitions of Proportion of Travel on Private Modes

(Private/All Trips, 
drop if All Trips==0)

(Private/All Trips, 
==0 if All Trips==0)

(1) (2) (3)
Treatment 0.074*** 0.087*** 0.056**

(0.024) (0.024) (0.022)
Treatment * Hot day 0.132*** 0.136*** 0.133***

(0.042) (0.051) (0.034)
Hot Day -0.023 0.004 -0.041

(0.065) (0.064) (0.065)
Mean for control group 0.597 0.538 0.636
Mean outcome on hot 
days for control group

0.561 0.539 0.578

N 2,651 2,877 2,877

Notes: The treatment variable is an indicator equal to one if an individual received any subsidy. A hot 
day is defined as one that is at least 95 degrees. Month, cohort, day-of-week, and followup fixed effects 
are included in the regressions, and two-way clustering at the person level and the day level is used to 
calculate the standard errors. Observations are dropped if the survey begin and end dates are not the 
same.In our sample, 0.0547 of the days are above 95 degrees. 

Proportion Private

(Private/All Trips, 
==1 if All Trips==0)

Table A5. Effect of a Hot Day (≥ 90 ◦F) on Number of Trips by Transit Type

PANEL A: Estimates of the day-level regressions

(1) (2) (3) (4)
Treatment 0.256** 0.075** -0.111 0.367***

(0.113) (0.030) (0.104) (0.112)
Treatment * Hot day -0.484*** 0.017 -0.221 -0.263

(0.180) (0.041) (0.150) (0.168)
Hot Day 0.398** 0.000 0.170 0.228*

(0.166) (0.035) (0.133) (0.131)
Mean for control group 2.859 2.835 1.225 1.633
Mean outcome on hot 
days for control group

3.255 3.219 1.438 1.818

N 2,877 2,877 2,877 2,877
PANEL B: Effects aggregated to the month level

(1) (2) (3) (4)
Treatment 7.680 - -3.330 11.010
Treatment * Hot Day -5.314 - -2.427 -2.888
Hot Day 4.370 - 1.867 2.503
Total 6.736 - -3.890 10.626
Notes: The treatment variable is an indicator equal to one if an individual received any subsidy. A hot day is defined as 
one that is at least 90 degrees. Month, cohort, day-of-week, and followup fixed effects are included in the regressions, 
and two-way clustering at the person level and the day level is used to calculate the standard errors. Observations are 
dropped if the survey begin and end dates are not the same.In our sample, 0.366 of the days are above 90 degrees. The 
results in Panel B are obtained by multiplying all effects by the number of days in a month (30) and multiplying the hot 
day and interaction coefficients by the probability of a hot day (0.366).

All Trips

Proportion 
Private

(Private/All Trips)
Public 

(Metro+Bus+SWVL)

Private 
(Personal+Uber+

Taxi+Toktok)

All Trips

Proportion 
Private

(Private/All Trips)
Public 

(Metro+Bus+SWVL)

Private 
(Personal+Uber+

Taxi+Toktok)
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Table A6. Effect of a Hot Day (≥ 95 ◦F) on # of Daily Uber Trips, Separate Treatments

Trips Distance (IHS) Trips Distance (IHS) Trips Distance (IHS)
(1) (2) (3) (4) (5) (6) (7) (8)

25% Subsidy 0.281*** 0.463*** 0.061*** 0.158*** 0.126*** 0.264*** 0.092*** 0.196***
(0.028) (0.043) (0.009) (0.022) (0.013) (0.027) (0.011) (0.022)

50% Subsidy 0.563*** 0.892*** 0.114*** 0.299*** 0.265*** 0.547*** 0.182*** 0.396***
(0.036) (0.051) (0.010) (0.027) (0.019) (0.035) (0.014) (0.027)

25% Subsidy * Hot Day 0.005 0.022 -0.003 -0.001 -0.010 -0.017 0.019 0.051
(0.042) (0.062) (0.011) (0.029) (0.021) (0.040) (0.019) (0.035)

50% Subsidy * Hot Day -0.097* -0.156** -0.024 -0.054 -0.072*** -0.151*** 0.001 -0.010
(0.056) (0.079) (0.015) (0.039) (0.027) (0.053) (0.023) (0.045)

Hot Day 0.017 0.009 0.007 0.004 0.019 0.030 -0.008 -0.020
(0.031) (0.046) (0.009) (0.023) (0.016) (0.031) (0.012) (0.024)

Mean for control group 0.209 0.402 0.0460 0.112 0.103 0.222 0.0606 0.133

Mean outcome on hot 
days for control group

0.188 0.362 0.0384 0.0898 0.0846 0.189 0.0655 0.144

N 112,115 112,115 112,115 112,115 112,115 112,115 112,115 112,115

Notes: The subsidy variables are indicator variables equal to one if an individual received a given subsidy level. A hot day is defined as one that is at least 90 
degrees. Month, cohort, and day-of-week fixed effects are included in the regressions, and two-way clustering at the person level and the day level is used to 
calculate the standard errors. The Uber admin data is used to produce the results in this table.

All Day  3am-10am  11am-6pm 7pm-2am

Trips Distance (IHS)

Table A7. Effect of Hot Day (≥ 95 ◦F) on # of Trips by Transit Type, Separate Treat-
ments

PANEL A: Estimates of the day-level regressions

(1) (2) (3) (4)
25% Subsidy 0.102 0.049* -0.079 0.181*

(0.110) (0.028) (0.105) (0.104)
50% Subsidy 0.169 0.096*** -0.219** 0.388***

(0.109) (0.026) (0.093) (0.106)
25% Subsidy * Hot day -0.848*** 0.175*** -0.835*** -0.013

(0.274) (0.063) (0.264) (0.305)
50% Subsidy * Hot day -0.812** 0.097** -0.467** -0.345

(0.341) (0.038) (0.201) (0.304)
Hot Day 0.167 -0.023 0.299 -0.132

(0.346) (0.064) (0.340) (0.315)
Mean for control group 2.859 0.597 1.225 1.633
Mean outcome on hot 
days for control group

3.327 0.561 1.538 1.788

N 2,877 2,651 2,877 2,877
PANEL B: Effects aggregated to the month level

(1) (2) (3) (4)
25% Subsidy 3.06 - -2.37 5.43
50% Subsidy 5.07 - -6.57 11.64
25% Subsidy * Hot day -1.392 - -1.370 -0.021
50% Subsidy * Hot day -1.332 - -0.766 -0.566
Hot Day 0.274 - 0.491 -0.217
Total for 25% Subsidy 1.942 - -3.250 5.192
Total for 50% Subsidy 4.012 - -6.846 10.857

Notes: The subsidy variables are indicator variables equal to one if an individual received a given subsidy level. A hot 
day is defined as one that is at least 90 degrees. Month, cohort, day-of-week, and followup fixed effects are included in 
the regressions, and two-way clustering at the person level and the day level is used to calculate the standard errors. 
Observations are dropped if the survey begin and end dates are not the same. In our sample, 0.0547 of the days are 
above 90 degrees. The results in Panel B are obtained by multiplying all effects by the number of days in a month (30) 
and multiplying the hot day and interaction coefficients by the probability of a hot day (0.0547).

All Trips

Proportion 
Private

(Private/All Trips)
Public 

(Metro+Bus+SWVL)

Private 
(Personal+Uber+

Taxi+Toktok)

All Trips

Proportion 
Private

(Private/All Trips)
Public 

(Metro+Bus+SWVL)

Private 
(Personal+Uber+

Taxi+Toktok)
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